実験用電源を真面目に作ってみる(その5)
2018-02-24
三端子レギュレータは非常に優れた機能を持っていますが、必要な出力電圧より高い入力電圧を与えて定電圧を得るため、その差分の電圧と出力電流の積・・・即ち電力を熱にして追い出す必要があります。入力電圧をどの程度高くする必要があるかは、データシートにきちんと明記されています。LM317Pのものを見てみましょう。

とりあえず25℃で1Aを出力するポイントを赤丸で囲ってみましたが、凡そ2V程度ドロップする・・・ということは、希望する出力電圧より2V以上高い入力電圧を与えてやらなければならないことになります。つまり、1A出力では最低でも2Wくらいの電力分を消費させる(放熱させる)必要があるわけです。
問題は、必要な出力電圧より2Vだけ高い電圧を常に供給することは、市販の電源トランスの”電圧の刻み”では無理であり、どうしても”2Vより高い電圧”を与えることになります。そして、これに連れて消費させなければならない電力も増えます。例えば、今回使用する電源トランス(HTR-161)の最低出力電圧は10Vですが、仮にこの交流10Vを整流して12Vの直流を得た上でレギュレータに与え、出力として1.5Vで1Aの出力を得ようとすると、単純計算で「(12V-1.5V) x 1A = 10.5W」分の放熱が必要になります。これは、かなり大きな放熱器が必要そうですね・・・
では、もう少し具体的に掘り下げてみましょう。
レギュレータへの電圧入力はいわゆる”脈流”のレベルで与えられますが、「実験用電源を真面目に作ってみるシリーズ」の”その3”の実測時に、トランス出力の最大・最小の電圧でこの様子をデータとして採ってあります。これを表にまとめました。

ダミーロードが12Ωのものだったため16Vと10Vで出力電流(表中のIL)が違ってしまっていますが、1A出力時のP-Pは凡そ2V弱程度と推測できます。一方、レギュレータが安定して定電圧を出力するためには、整流後の最低電圧(表中の”Min”)より2V低いことが要求されます。ここは少しマージンを取って2.5Vとすると、トランス出力16Vでは15V、出力10Vでは9Vが、ほぼ適正な出力電圧(1A出力時)となります。
その上で、トランス出力16Vと10Vの脈流の平均値(表中の”Ave”)と直流出力との差が、熱にして追い出すべき消費電力になります。つまり・・・
・トランス出力16Vで15Vの直流出力を得る場合:(18.56V-15V) x 1A ≒ 3.6W
・トランス出力10Vで9Vの直流出力を得る場合:(12.44V-9V) x 1A ≒ 2.4W
ということになります。さらに最初に目標とした仕様「1.5Vからの連続可変」について考慮すると、
・トランス出力16Vで1.5Vの直流出力を得る場合:(18.56V-1.5V) x 1A ≒ 17W
・トランス出力10Vで1.5Vの直流出力を得る場合:(12.44V-1.5V) x 1A ≒ 11W
というように、トランス出力10Vから1.5Vを得た方が消費電力がかなり抑えられます。そこで、トランス出力16Vの可変範囲を9Vから15V、トランス出力10Vの可変範囲を1.5Vから9Vとすることにしました。個々の可変範囲で消費電力が最大になる時の計算も記しておきます。
・トランス出力16Vで9Vの直流出力を得る場合:(18.56V-9V) x 1A ≒ 9.6W
・トランス出力10Vで1.5Vの直流出力を得る場合:上記より11W
つまり、今回の電源製作では11W程度の熱処理が行える放熱器が必要だということが解りました。では、この放熱を行うための設計に駒を進めましょう・・・って、これは次の記事にしましょうかね

とりあえず25℃で1Aを出力するポイントを赤丸で囲ってみましたが、凡そ2V程度ドロップする・・・ということは、希望する出力電圧より2V以上高い入力電圧を与えてやらなければならないことになります。つまり、1A出力では最低でも2Wくらいの電力分を消費させる(放熱させる)必要があるわけです。
問題は、必要な出力電圧より2Vだけ高い電圧を常に供給することは、市販の電源トランスの”電圧の刻み”では無理であり、どうしても”2Vより高い電圧”を与えることになります。そして、これに連れて消費させなければならない電力も増えます。例えば、今回使用する電源トランス(HTR-161)の最低出力電圧は10Vですが、仮にこの交流10Vを整流して12Vの直流を得た上でレギュレータに与え、出力として1.5Vで1Aの出力を得ようとすると、単純計算で「(12V-1.5V) x 1A = 10.5W」分の放熱が必要になります。これは、かなり大きな放熱器が必要そうですね・・・

では、もう少し具体的に掘り下げてみましょう。
レギュレータへの電圧入力はいわゆる”脈流”のレベルで与えられますが、「実験用電源を真面目に作ってみるシリーズ」の”その3”の実測時に、トランス出力の最大・最小の電圧でこの様子をデータとして採ってあります。これを表にまとめました。

ダミーロードが12Ωのものだったため16Vと10Vで出力電流(表中のIL)が違ってしまっていますが、1A出力時のP-Pは凡そ2V弱程度と推測できます。一方、レギュレータが安定して定電圧を出力するためには、整流後の最低電圧(表中の”Min”)より2V低いことが要求されます。ここは少しマージンを取って2.5Vとすると、トランス出力16Vでは15V、出力10Vでは9Vが、ほぼ適正な出力電圧(1A出力時)となります。
その上で、トランス出力16Vと10Vの脈流の平均値(表中の”Ave”)と直流出力との差が、熱にして追い出すべき消費電力になります。つまり・・・
・トランス出力16Vで15Vの直流出力を得る場合:(18.56V-15V) x 1A ≒ 3.6W
・トランス出力10Vで9Vの直流出力を得る場合:(12.44V-9V) x 1A ≒ 2.4W
ということになります。さらに最初に目標とした仕様「1.5Vからの連続可変」について考慮すると、
・トランス出力16Vで1.5Vの直流出力を得る場合:(18.56V-1.5V) x 1A ≒ 17W
・トランス出力10Vで1.5Vの直流出力を得る場合:(12.44V-1.5V) x 1A ≒ 11W
というように、トランス出力10Vから1.5Vを得た方が消費電力がかなり抑えられます。そこで、トランス出力16Vの可変範囲を9Vから15V、トランス出力10Vの可変範囲を1.5Vから9Vとすることにしました。個々の可変範囲で消費電力が最大になる時の計算も記しておきます。
・トランス出力16Vで9Vの直流出力を得る場合:(18.56V-9V) x 1A ≒ 9.6W
・トランス出力10Vで1.5Vの直流出力を得る場合:上記より11W
つまり、今回の電源製作では11W程度の熱処理が行える放熱器が必要だということが解りました。では、この放熱を行うための設計に駒を進めましょう・・・って、これは次の記事にしましょうかね

- 関連記事
-
- 実験用電源を真面目に作ってみる(その7)
- 実験用電源を真面目に作ってみる(その6)
- 実験用電源を真面目に作ってみる(その5)
- 実験用電源を真面目に作ってみる(その4)
- 実験用電源を真面目に作ってみる(その3)